Перевод: с русского на все языки

со всех языков на русский

total critical load

  • 1 предельная нагрузка (выше которой алмазы разрушаются)

    Русско-английский словарь нормативно-технической терминологии > предельная нагрузка (выше которой алмазы разрушаются)

  • 2 предельная нагрузка

    Универсальный русско-английский словарь > предельная нагрузка

  • 3 предельная нагрузка

    * * *
    ( выше которой алмазы разрушаются) total critical load, ultimate load, safe load, ( оборудования) stalling point, total critical pressure, ( на вышку или треногу) collapsing strength

    Русско-английский словарь по нефти и газу > предельная нагрузка

  • 4 параллельная система ИБП

    1. parallel UPS system

     

    параллельная система ИБП
    -

    [Интент]

    Parallel Operation: The system shall have the option to install up to four (4) UPSs in parallel configuration for redundancy or capacity.
    1. The parallel UPS system shall be of the same design, voltage, and frequency. UPS modules of different size ratings shall be permitted to be paralleled together for purposes of increased capacity or UPS module redundancy. The UPSs in the parallel configuration shall not be required to have the same load capacity rating.
    2. Parallel Capacity: With N+0 system-level redundancy, up to 2MW of load can be supported by the system.
    3. Parallel Redundancy: With N+1 system-level redundancy, up to 1.5MW of load can be supported by the system, and only the UPS being replaced must be isolated from the source (bypass operation is not required for the entire system during the UPS replacement procedure).
    4. Output control: A load sharing circuit shall be incorporated into the parallel control circuits to ensure that under no-load conditions, no circulating current exists between modules. This feature also allows each UPS to share equal amounts of the total critical load bus. The output voltage, output frequency, output phase angle, and output impedance of each module shall operate in uniformity to ensure correct load sharing. This control function shall not require any additional footprint and shall be an integral function of each UPS. The static bypass switches shall be connected in parallel.
    5. Parallel System Controls: To avoid single points of failure, the UPS system shall have no single dedicated control system designed to control the operation of the parallel UPS system. Control of and direction of parallel UPSs shall take place via a master/slave relationship, where the first UPS to receive logic power asserts itself as a master. In the event of a master failure, a slave UPS shall take the role of master and assume the responsibility of the previous master UPS. Regardless of which UPS is master or slave, user changes to the system status, such as request for bypass, can be done from any UPS connected to the bus and all UPS on the bus shall transfer in simultaneously.
    6. Communication: Communication between modules shall be connected so that the removal of any single cable shall not jeopardize the integrity of the parallel communication system. Load sharing communications shall be galvanically isolated for purposes of fault tolerance between UPS modules. A UPS module's influence over load sharing shall be inhibited in any mode where the UPS inverter is not supporting its output bus. Transfers to and from bypass can be initiated from any online UPS in the system.
    7. Display: Each UPS multi-color LCD touch screen user interface shall be capable of using an active touch screen mimic bus to show the quantity of UPS(s) connected to the critical bus, as well as the general status of each UPS, such as circuit breaker status information. Any touchscreen display shall support the configuration of the [entire parallel] system and shall provide event and alarm data for all UPSs in the parallel configuration. A Virtual Display Application shall be available for download to the customer’s computer and shalll support remote monitoring of a complete system with up to 4 UPSs in parallel.
    8. Battery runtime: Each UPS must have its own battery solution. The battery solution for the entire system can be a combination of standard and third-party batteries, but each UPS must use only one battery solution – either standard or third-party batteries.
    9. Switchgear: A custom switchgear option shall be required for parallel operation.

    [Schneider Electric]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > параллельная система ИБП

  • 5 суммарная критическая нагрузка

    Универсальный русско-английский словарь > суммарная критическая нагрузка

  • 6 суммарная критическая нагрузка

    Русско-английский словарь по нефти и газу > суммарная критическая нагрузка

  • 7 сила

    tighting force, force мех., intensity, strength
    * * *
    си́ла ж. мех.
    force
    быть в си́ле по отноше́нию к … (о теореме, математическом законе) — hold [be valid] for …
    в си́ле — in force
    си́ла возде́йствует на … — a force acts on …
    си́ла коле́блется [пульси́рует, флуктуи́рует] — a force fluctuates …
    прикла́дывать си́лу — apply a force to, exert a force on
    си́ла противоде́йствует, напр. прило́женной — a force opposes, e. g., the impressed force
    си́ла, ра́вная по величине́ и обра́тная по направле́нию — an equal and oppositely directed force
    раскла́дывать си́лу на составля́ющие — resolve a force into components
    распределя́ть си́лу — distribute a force
    скла́дывать си́лы — combine forces
    сосредото́чивать си́лу в … — concentrate a force at …
    уравнове́шивать си́лы — place forces in equilibrium, balance forces
    архиме́дова си́ла — buoyancy force
    астази́рующая си́ла — labilizing force
    аэродинами́ческая си́ла — aerodynamic force
    аэродинами́ческая, подса́сывающая си́ла — leading edge force
    аэродинами́ческая, попере́чная си́ла — cross-wind force
    аэростати́ческая си́ла — aerostatic force
    бокова́я си́ла мор. — athwartship(s) [cross, lateral] force
    вале́нтная си́ла — valence force
    си́ла ве́тра — force of wind, wind force
    си́ла ве́тра составля́ет, напр. 5 ба́ллов по шкале́ Бофо́рта — wind force is, e. g., 5 points on the Beaufort scale
    Ван-дер-Ва́льсовы си́лы ( межмолекулярного взаимодействия) — Van der Waals forces
    взаимоде́йствующая си́ла — interacting force
    вибродви́жущая си́ла — vibromotive force
    внеце́нтренная си́ла — eccentric force
    вне́шняя си́ла — impressed force
    возвраща́ющая си́ла — restoring cancel
    возмуща́ющая си́ла — disturbing [perturbing] force
    враща́ющая си́ла — rotary [rotational] force
    выта́лкивающая си́ла ( из жидкости или газа) — buoyancy [buoyant] force
    грузоподъё́мная си́ла — carrying [lifting] capacity
    дальноде́йствующая си́ла — long-range force
    дви́жущая си́ла — motive [driving] force
    си́ла зву́ка — sound intensity
    знакопереме́нная си́ла — alternating force
    си́ла излуче́ния — intensity of radiation, radiant intensity
    си́ла ине́рции — inertial force
    си́ла ине́рции, махова́я — fly-wheel force
    каса́тельная си́ла — tangential force
    ко́нтурная си́ла — boundary force
    си́ла Корио́лиса — Coriolis force
    корио́лисова си́ла — Coriolis force
    короткоде́йствующая си́ла — short-range force
    коэрцити́вная си́ла — coercive force
    коэрцити́вная си́ла по враще́нию — rotational coercive force
    коэрцити́вная си́ла по движе́нию сте́нок — wall coercive force
    крити́ческая си́ла сопр.critical load
    крутя́щая си́ла — torsional force
    куло́новская си́ла — Coulomb force
    си́ла Ло́ренца ( в электромагнитном поле) — Lorentz force
    лошади́ная си́ла — horse-power, hp
    лошади́ная, индика́торная си́ла — indicated horse-power
    лошади́ная, эффекти́вная си́ла — effective horse-power
    магнетогидродинами́ческая си́ла — magnetohydrodynamic [MHD] force
    магни́тная си́ла — magnetic force
    си́ла магни́тного по́ля — magnetic field strength, magnetic intensive
    магнитодви́жущая си́ла [мдс] — magnetomotive force, mmf
    си́ла межмолекуля́рного взаимоде́йствия — molecular force
    намагни́чивающая си́ла — magnetizing force
    си́ла, напра́вленная вверх — upward force
    си́ла, напра́вленная вниз — downward force
    си́ла, напра́вленная вперё́д — forward force
    си́ла, напра́вленная наза́д — rearward force
    направля́ющая си́ла — directive force
    оконе́чная си́ла — terminal load
    опроки́дывающая си́ла — tilting [tipping] force
    опти́ческая си́ла — focal [lens] power
    осева́я си́ла — axial thrust
    си́ла отда́чи — recoil force
    отклоня́ющая си́ла — deflecting force
    отрыва́ющая си́ла — pull
    си́ла отта́лкивания (напр. между одноимённо заряженными частицами) — repulsive force
    си́ла плаву́чести — buoyancy [buoyant] force
    си́ла пове́рхностного натяже́ния — surface tension force
    подъё́мная си́ла ав.lift
    с нулево́й подъё́мной си́лой — zero-lift
    создава́ть подъё́мную си́лу — give [induce] lift
    подъё́мная, аэродинами́ческая си́ла — aerodynamic lift
    подъё́мная, гидродинами́ческая си́ла — hydrodynamic lift
    подъё́мная си́ла кра́на — carrying [lifting] capacity of a crane
    приведё́нная си́ла — equivalent force
    прило́женная си́ла — superimposed [applied] force
    си́ла притяже́ния — attractive force, force of attraction
    си́ла противоде́йствия — opposing force
    противоэлектродви́жущая си́ла — back [counter] electromotive force, back [counter] emf
    рабо́чая си́ла — labour (force), manpower
    рабо́чая, квалифици́рованная си́ла — skilled labour (force)
    равноде́йствующая си́ла — resultant force
    разреша́ющая си́ла — resolving power, resolution
    разруша́ющая си́ла — breaking force
    растя́гивающая си́ла — tensile force
    си́ла расшире́ния — expansive force
    реакти́вная си́ла — reaction (force), reactive force
    результи́рующая си́ла — resultant force
    си́ла све́та — luminous intensity, candle power
    си́ла све́та, энергети́ческая — intensity of radiation, radiant intensity
    си́ла свя́зи физ., хим.bonding force
    составля́ющая си́ла — component force
    сторо́нние си́лы — extraneous [external, applied] forces
    сумма́рная си́ла — total force
    си́ла сцепле́ния — cohesive force
    термоэлектродви́жущая си́ла [термоэдс] — thermoelectromotive force, thermo-emf
    си́ла то́ка — strength of current
    си́ла тре́ния — frictional force
    си́ла тя́ги ав.thrust (force)
    си́ла тя́ги на крюке́ — drawbar capacity, drawbar horse-power
    тя́говая си́ла — pull
    си́ла тя́жести — (pull of) gravity, gravitational force
    под де́йствием си́лы тя́жести … — by gravity
    тя́нущая си́ла — tractive force, pull
    уде́рживающая си́ла — confining [holding] force
    упру́гая си́ла — elastic force
    уравнове́шивающая си́ла — balancing force
    си́ла ускоре́ния — acceleration force
    фотоэлектродви́жущая си́ла [фотоэдс] — photoelectromotive force, photo-emf
    центра́льная си́ла — central force
    центробе́жная си́ла — centrifugal force
    центростреми́тельная си́ла — centripetal force
    э́йлерова си́ла сопр.critical load
    си́ла электри́ческого то́ка — strength of current
    электродви́жущая си́ла — electromotive force (см. тж. эдс)
    си́ла электростати́ческого по́ля — electrostatic force, electrostatic field intensity

    Русско-английский политехнический словарь > сила

  • 8 нагрузка


    load
    - (нервно-психическая и физическая)workload
    -, асимметричная — unsymmetrical load
    асимметричная нагрузка на самолет может возникнуть при отказе критического двигателя. — the airplane must be designed for unsymmetrical loads resulting from the failure of the critical engine.
    -, аэродинамическая — aerodynamic load
    -, безопасная — safe load
    -, боковая — side load
    для случая боковой нагрузки предполагается что самолет находится в горизонтальном положении при условии касания земли только колесами основных опор. — for the side load condition, the airplane is assumed to be in the level attitude with only the main wheels contacting the ground.
    -, вертикальная — vertical load
    -, вибрационная — vibration load
    -, воздушная — air load
    -, вызванная отказом двигателя, асимметричная — unsymmetrical load due to engine failure
    - генератораgenerator load
    -, гидравлическая — hydraulic load
    -, гироскопическая — gyroscopic load
    -, десантная — air-delivery load
    -, десантная (парашютная) — paradrop load
    -, динамическая — dynamic load
    нагрузка, возникающая при воздействии положительного (ипи отрицательного) ускорения на конструкцию ла. — any load due to acceleration (or deceleration) of an aircraft, and therefore proportional to its mass.
    -, динамическая, при полном вытягивании строп парашюта до наполнения купола — (parachute) deployment shock load the load which occurs when the rigging lines become taut prior to inflation of the canopy.
    -, динамическая, при раскрытии купола парашюта — (parachute) opening shock load

    maximum load developed during rapid inflation of the canopy.
    -, длительная — permanent load
    -, допускаемая прочностью самолета — load not exceeding airplane structural limitations
    -, допустимая — allowable load
    -, знакопеременная — alternate load
    -, индуктивная (эл.) — inductive load
    -, инерционная — inertia load
    -, коммерческая bес пассажиров, груза и багажа. — payload (p/l) weight of passengers, cargo, and baggage.
    - коммерческая, располагаемая — payload available
    -, максимальная коммерческая — maximum payload
    разность между максимальным расчетным весом без топлива и весом пустого снаряженного ла. — maximum design zero fuel weight minus operational empty weight.
    -, максимальная предельная радиальная (на колесо) — maximum radial limit load (rating of each wheel)
    -, максимальная статическая (на колесо) — maximum static load (rating of each wheel)
    -, маневренная — maneuvering load
    -, минимальная расчетная — minimum design load
    при определении минимальных расчетных нагрузок необходимо учитывать влияние возможных усталостных нагрузок и нагрузок от трения и заклинивания. — the minimum design loads must provide а rugged system for service use, including consideration of fatigua, jamming and friction loads.
    -, моментная (напр. поворотного срезного болта водила) — torque load
    - на вал (ротор)shaft (rotor) load
    - на генераторgenerator load
    - на гермокабину (от избыточного давления)pressurized cabin pressure differential load
    конструкция самолета допжна выдерживать полетные нагрузки в сочетании с нагрузками от избыточного давления в гермокабине. — the airplane structure must be strong enough to withstand the flight loads combined with pressure differential loads.
    - на двигательpower load on engine

    prevent too sudden and great power load being thrown on the engine.
    - на единицу площадиload per unit area
    - на колесоwheel load
    - на колонку (или штурвал, ручку) при продольном yправлении — elevator pressure (felt when deflecting control column (wheel or stick)
    - на конструкцию, выраженная в единицах ускорения (статическая и динамическая) — (static and dynamic) loads on structure expressed in g units
    - на крыло, удельная — wing loading
    часть веса самолета, приходящаяся на единицу поверхности крыла и равная частномy от деления полетного веса самолета на площадь крыла. — wing loading is gross weight of aeroplane divided by gross wing area.
    - на лопасть, удельная — blade loading
    - на моторамуload on engine mount
    - на мотораму, боковая — side load on engine mount
    - на мощность, удельная часть веса самолета, приходящаяся на единицу силы тяги, развиваемой его силовой установкой при нормальном режиме работы. — power loading the gross weight of an aircraft divided by the horsepower of the engine(s).
    - на орган управления (усилие)control pressure
    - на орган управления, пропорциональная величине отклонения поверхности управнения — control pressure proportional to amount of control surface deflection
    - на орган управления (штурвал, колонку, ручку управления, педали), создаваемая загрузочным механизмом — control pressure created by feel unit /or spring/
    - на орган управления (штурвал, колонку или педали), создаваемая отклоняемой поверхностью управления — control pressure created by control surface
    - на педали при путевом управленииrudder pressure (felt when deflecting pedals)
    - на площадь, сметаемую несущим винтом — rotor disc loading
    величина подъемной силы (тяги) несущего винта, деленная на площадь ометаемую винтом. — the thrust of the rotor divided by the rotor disc area.
    - на поверхность управления — control surface load, backpressure on control surface
    - на поверхность управления от порыва ветраcontrol surface gust load
    - на поверхность управления, удельная — control surface loading the mean normal force per unit area carried by an aerofoil.
    - на полfloor load
    - на пол, удельная — floor loading
    -, направленная к продольной оси самолета, боковая — inward acting side load
    -, направленная от продольной оси самолета, боковая — outward acting side load
    - на размах, удельная — span loading
    полетный вес самолета, деленный на квадрат размаха крыла. — the gross weight of an airplane divided by the square of the span.
    - на растяжение — tensile load /stress, strain/
    - на руль высоты (усилие при отклонении)backpressure on elevator
    - на руль направления (усилие при отклонении)backpressure on rudder
    - на сжатиеcompression load
    - на систему управленияcontrol system load
    максимальные и минимальные усилия летчика, прикладываемые к органам управления (в условиях полета) и передаваемые в точку крепления проводки управления к рычагу поверхности управления. — the maximum and minimum pilot forces are assumed to act at the appropriate control grips or pads (in a manner simulating flight conditions) and to be reacted at the attachment of the control system to control surface horn.
    - на скручиваниеtorsional load
    - на срезshear load
    - на тягу, удельная — thrust loading
    отношение веса реактивного самолета к тяге, развиваемой его двигателем (двигателями), — the weight-thrust ratio of а jet aircraft expressed as gross weight (in kg) divided by thrust (in kg).
    - на шасси при посадкеground load on the landing gear at touch-down
    - на шину (колеса)load on tire
    - на штурвал (ручку) при управлении no кренуaileron pressure (felt when deflecting control wheel (or stick)
    - на элерон (усилие при отклонении)backpressure on aileron
    -, номинальная (эл.) — rated load
    -, нормальная — normal load
    -, нормальная эксплуатационная (в системах управления) — normal operating load control system load that can be obtained in normal operation.
    -, ограниченная весом, коммерческая (платная) — weight limited payload (wlp)
    коммерческая нагрузка, oграниченная одним наиболее перечисленных ниже): — payload as restricted by the most critical of the following:
    1. взлетным весом снаряженного самолета за вычетом веса пустого снаряженного самолета и минимального запаса расходуемого топлива. — 1. operational takeoff weight minus operational empty weight minus minimum usable fuel.
    2. посадочным весом снаряженного самолета за вычетом веса пустого снаряженнаго самолета и анз топлива. — 2. operational landing weight minus operational empty weight minus flight reserve fuel.
    3. ограничениями по использованию отсеков. данная нагрузка не должна превышать макс. коммерческую нагрузку. — 3. compartment and other related limits. (it must not exceed maximum payload).
    -, ограниченная объемом, коммерческая (платная) — space limited payload (slp)
    нагрузка, ограниченная числом мест, объемными и другими пределами кабины, грузовых и багажных отсеков, — payload as restricted by seating,volumetric, and other related limits of the cabin, cargo, and baggage compartments. (it must not exceed maximum payload).
    -, омическая (эл.) — resistive load
    -, осевая — axial load
    -, основная — basic load
    - от встречного порыва (ветpa)load resulting from encountering head-on gust
    - от заклинивания (подвижных элементов)jamming load
    - от избыточного давления (в гермокабине)pressure differential load
    - от порыва (ветра)gust load
    случай нагружения конструкции самолета, особенного крыла, в результате воздействия на самолет вертикальных и горизонтальных воздушных течений (порывов), — the load condition which is imposed on an airplane, especially the wings, as a result of the airplane's flying into vertical or horizontal air currents.
    - от тренияfriction load
    -, параллельная линия шарниров (узлов подвески поверхностей управления). — load parallel to (control surface) hinge line
    -, переменная (по величине) — varying load, load of variable magnitude
    -, пиковая — peak load
    -, платная (коммерческая) — payload (p/l)
    beс пассажиров, груза и багажа. — weight of passengers, cargo, and baggage.
    -, повторная — repeated load
    расчеты и испытания конструкции должны продемонстрировать ее способность выдерживать повторные переменные нагрузки возможные при эксплуатации. — the structure must be shown by analysis, tests, or both, to be able to withstand the repeated load of variable magnitude expected in service.
    -, погонная — load per unit length
    -, полезная — payload (p/l)
    вес пассажиров, груза, багажа — weight of passengers, cargo, and baggage.
    -, полезная — useful load
    разность между взлетным весом снаряженного и весом пустого снаряженного ла. (включает: коммерческую нагрузку, вырабатываемые топливо и др. жидкости, не входящие в состав снаряжения ла). — difference between operational takeoff weight and operational empty weight. (it includes payload, usable fuel, and other usable fluids not included as operational items).
    -, полетная — flight load
    отношение составляющей аэродинамической силы (действующей перпендикулярно продольной оси самолета) к весу самолета. — flight load factors represent the ratio of the aerodynamic force component (acting normal to the assumed longitudinal axis of the airplane) to the weight of the airplane.
    -, полная — full load
    включает вес экипажа, снаряжения, топлива и полезной нагрузки.
    -, постоянная — permanent load
    - предельная, разрушающая (по терминологии икао) — ultimate load
    -, продольная — longitudinal load
    -, равномерная — uniform load
    -, радиальная эксплуатационная (на каждое колесо шасcи) — radial limit load (rating of each wheel)
    -, разрушающая (расчетная) — ultimate load
    нагрузка, в результате которой возникает, или может возникнуть на основании расчетов, разрушение элемента конструкции. — the load which will, or is computed to, cause failure in any structural member.
    -, разрушающая (способная вызывать разрушение) — destructive load
    торможение может привести к появлению разрушающей нагрузки на переднее колесо. — braking can cause destructive loads on nosewheel.
    -, распределенная — distributed load
    -, рассредоточенная — distributed load
    -, расчетная — ultimate load
    расчетная нагрузка опрелеляется как произведение эксплуатационной нагрузки на коэффициент безопасности. — ultimate load is the limit load multiplied by the prescribed factor of safety.
    -, расчетная (по терминологии икао) — proof load
    -, расчетная (по усилиям в системе управления) — design load design loads are accepted in the absence of a rational analysis.
    -, скручивающая — torsional load
    -, служебная — operational items /load/
    включает экипаж, парашюты, кислородное оборудование экипажа, масло для двигателей и невырабатываемое топливо. — includes: crew, parachutes, crew's oxygen equipment, engine oil, unusable fuel.
    -, служебная (стандартная) — standard items
    служебная нагрузка может включать: нерасходуемые топливо и жидкости, масло для двигателей, огнетушители, аварийное кислородное оборудоавние, конструкции в буфете, дополнительное электронное оборудование. — may include, unusable fuel and other fluids, engine oil, toilet fluid, fire extinguishers, emergency oxygen equipment, structure in galley, buffet, supplementary electronic equipment.
    - снаряженного (самолета)operational load
    -, сосредоточенная — concentrated load
    -, статическая — static load
    постоянно действующая нагрузка, постепенно возрастающая от нуля до своего максимума при нулевом ускорении. — а stationary load or one that is gradually increased from zero to its maximum. it is an unaccelerated basic load.
    -, суммарная — total load
    -, ударная — impact load
    -, уравновешивающая — balancing load
    -, усталостная — fatigue load
    -, фрикционная — friction load
    -, центробежная (на ротор) — centrifugal loading (on rotor)
    -, частичная — partial load
    -, чрезмерная — overload(ing)
    -, эксплуатационная — limit load
    максимальная нагрузка, воздействующая на самолет в эксплуатации, — the strength requirements are specified in terms of limit loads (the maximum loads to be expected in service).
    -, эксплуатационная нормальная (на систему управления) — normal operating load, load obtained in normal operationtained in normal operation
    -, электрическая — (electrical) load
    весовая отдача по полезной н. — useful load-to-takeoff weight ratio
    зависимость платной н. от дальности полета — payload-range curve
    под н. — under load
    при установившемся режиме работы с полной н. — at steady full-load conditions
    распределение н. — load distribution
    точка приложения н. — point of load application
    характеристика н. — load characteristic
    включать (эл.) н. — activate load
    включать (эл.) н. на генератор, (аккумулятор) — apply load to (generator, battery)
    воспринимать н. — take up load
    выдерживать н. — withstand /support/ load
    испытывать h. — be subjected to load
    нести h. — carry load
    передавать н. — transmit load
    подключать (эл.) н. к... — apply load to...
    прикладывать — apply load to...
    работать без н. (об электродвигателе, преобразователе) — run unloaded
    сбрасывать (эл.) н. — deactivate load
    снимать н. (руля высоты) — relieve elevator pressure, adjust elevator trim tab, relieve pressure by adjusting elevator trim control
    создавать (маханическую) н. — impose load on...
    устанавливать за счет платной h. — install (smth) with payload penalty

    Русско-английский сборник авиационно-технических терминов > нагрузка

  • 9 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 10 величина

    amount, size, magnitude
    * * *
    величина́ ж.
    1. (явление, свойство, напр. ток, напряжение, скорость и т. п.) quantity
    измеря́ть величину́ — measure a quantity
    определя́ть величину́ — define a quantity
    пренебрега́ть величино́й — neglect [ignore] a quantity
    2. ( значение) value, magnitude
    вы́численная величина́ не о́чень точна́ — the calculated value is of limited accuracy
    на поря́док величины́ (больше, меньше) — by an order of magnitude (greater, smaller)
    поря́док величины́ — the order of (the) magnitude
    в натура́льную величину́ — life-size
    на значи́тельную величину́ — by a large amount
    абсолю́тная величина́ ( комплексного числа) — absolute value, modulus
    аддити́вная величина́ — additive quantity
    ана́логовая величина́ — analogue quantity
    безразме́рная величина́ — non-dimensional [dimensionless] quantity
    бесконе́чно больша́я величина́ — infinite quantity
    бесконе́чно ма́лая величина́ — infinitesimal quantity
    величина́ ве́ктора, абсолю́тная — magnitude of a vector
    ве́кторная величина́ — vector quantity
    взаи́мно незави́симые величи́ны — mutually independent variables
    взве́шенная величина́ — weighted quantity
    вспомога́тельная величина́ — auxiliary quantity
    входна́я величина́
    1. input quantity
    2. input value
    входна́я, переме́нная величина́ — input variable
    величина́ вы́тяжки текст.degree of draught
    выходна́я величина́
    1. output quantity
    2. output value
    гармони́ческая величина́ — harmonic quantity
    грани́чная величина́ — boundary value
    величина́ детона́ции ( топлива) — knock rating
    динами́ческая величина́ — dynamic quantity
    дискре́тная величина́ — discrete quantity
    дополни́тельная величина́ — complement
    допуска́емая величина́ — allowable [permissible] value
    за́данная величина́ — specified [predetermined] value
    величина́ задаю́щая величина́ — specifying value
    величина́ заря́да ВВ — size of an explosive charge
    идеа́льная величина́ — ideal value
    измеря́емая величина́ — measurable quantity
    имено́ванная величина́ — denominate quantity
    интегра́льная величина́ — integral quantity
    информацио́нная величина́ — informational value
    иррациона́льная величина́ — irrational quantity
    иско́мая величина́ — the unknown (quantity), the quantity sought for
    и́стинная величина́ — true value
    колеба́тельная величина́ — oscillating quantity
    ко́мплексная величина́ — complex quantity
    ко́мплексно-сопряжё́нная величина́ — complex conjugate
    коне́чная величина́
    2. finite value
    коррели́рованная величина́ — correlated value
    крити́ческая величина́ — critical value
    локализо́ванная величина́ — local quantity
    мни́мая величина́ — imaginary quantity
    моното́нная величина́ — monotonic [monotone] quantity
    моното́нно возраста́ющая величина́ — monotone [monotonic] increasing quantity
    моното́нно убыва́ющая величина́ — monotone [monotonic] decreasing quantity
    наблюда́емая величина́ — observable value
    напра́вленная величина́ — directed quantity
    натура́льная величина́ — actual [full] size
    величина́, не зави́сящая от объё́ма — volume-independent quantity
    неизве́стная величина́ — the unknown (quantity)
    величина́ неопределё́нности — amount of uncertainty
    непреры́вная величина́ — analogue quantity
    нерегули́руемая величина́ — incontrolled quantity
    несоизмери́мые величи́ны — incommensurable quantities
    несу́щая величина́ — load-bearing [load-carrying] value
    неэлектри́ческая величина́ — nonelectric(al) quantity
    номина́льная величина́ — nominal [rated] value
    нормиро́ванная величина́ — standardized value
    величина́ нулево́го поря́дка — zeroth-order quantity
    обобщё́нная величина́ — generalized quantity
    обра́тная величина́ — reciprocal (quantity), inverse (value)
    обра́тно пропорциона́льные величи́ны — inversely proportional quantities
    ограни́ченная величина́ — bounded quantity
    опо́рная величина́ — reference value
    оптима́льная величина́ — optimal [optimum] value
    относи́тельная величина́ — relative value
    отрица́тельная величина́ — negative (value)
    парциа́льная величина́ — partial quantity
    парциа́льная, мо́льная величина́ — partial mole quantity
    переме́нная величина́ — variable (quantity) (см. тж. переменная)
    периоди́ческая величина́ — periodic quantity
    периоди́ческая, уравнове́шенная величина́ — balanced periodic quantity
    величина́ погре́шности — magnitude of error
    величина́ поко́я — quiescent value
    положи́тельная величина́ — positive (value)
    поро́говая величина́ — threshold (value)
    величина́ (второ́го, тре́тьего и т. п. [m2]) поря́дка ма́лости — (second, third, etc.) order infinitesimal
    постоя́нная величина́ — constant (quantity) (см. тж. постоянная)
    постоя́нная во вре́мени величина́ — time-independent quantity
    преде́льная величина́ — limiting value
    преде́льно постоя́нная величина́ — quantity constant in the limit
    пренебрежи́мо ма́лая величина́ — negligible [ignorable] quantity
    приближё́нная величина́ — approximate value
    произво́дная величина́ — derivative
    пря́мо пропорциона́льные величи́ны — directly proportional quantities
    псевдопереме́нная величина́ — pseudovariable
    псевдопериоди́ческая величина́ — pseudoperiodic quantity
    псевдоскаля́рная ковариа́нтная величина́ — pseudoscalar covariant
    пульси́рующая величина́ — pulsating quantity
    разме́рная величина́ — denominate quantity
    расчё́тная величина́ — design quantity, design variable, design parameter
    регули́руемая величина́ — controlled quantity, controlled variable
    регули́рующая величина́ — regulated condition, manipulated variable
    величина́ с ве́сом — weighted quantity
    светова́я величина́ — photometric quantity
    синусоида́льная, затуха́ющая величина́ — damped sinusoidal quantity
    синусоида́льная, ко́мплексная величина́ — complex sinusoidal quantity
    скаля́рная величина́ — scalar (quantity)
    случа́йная величина́ — random [stochastic, chance] quantity, random [stochastic, chance] variable, variate
    случа́йная, незави́симая величина́ — independent random variable
    случа́йная, непреры́вная величина́ — continuous random variable
    соизмери́мые величи́ны — commensurable quantities
    сопряжё́нная величина́ — conjugate
    средневзве́шенная величина́ — weighted average, weighted mean
    среднеквадрати́чная величина́ — root-mean-square [rms] value
    сре́дняя величина́ — average [mean] value
    стохасти́ческая величина́ — stochastic [random] variable
    сумма́рная величина́ — total value
    углова́я величина́ — angular value
    уде́льная величина́ — specific quantity
    управля́емая величина́ — controlled variable, controlled quantity
    управля́ющая величина́ — controlling [manipulated] variable, controlling quantity
    ура́вненная величина́ — adjusted quantity
    установи́вшаяся величина́ — steady-state value
    факти́ческая величина́ — actual value
    физи́ческая величина́ — physical quantity
    фотометри́ческая величина́ — photometric quantity
    характеристи́ческая величина́ — characteristic quantity
    це́лая величина́ — integer quantity
    цифрова́я величина́ — digital quantity
    чи́сленная величина́ — numerical value
    электри́ческая величина́ — electrical quantity
    этало́нная величина́ — reference quantity
    эффекти́вная величина́ — effective value, root-mean-square [rms] value
    * * *

    Русско-английский политехнический словарь > величина

  • 11 ток

    ( солодовни) growing floor
    * * *
    ток м.
    1. эл. current
    вызыва́ть ток — cause a current to flow
    выпрямля́ть ток — rectify current
    ток замыка́ется по це́пи че́рез … — the current takes the path through …
    наводи́ть [индуци́ровать] ток — induce a current
    ток напра́влен к узлу́ — current enters a node
    ток напра́влен от узла́ — current leaves a node
    ток ответвля́ется — the current divides
    под то́ком — (to be) alive
    (по ла́мпе) протека́ет ток в … мА — (the tube) draws a current of … mA
    потребля́ть ток — draw current
    преобразо́вывать переме́нный ток в постоя́нный — convert alternating to direct current
    преобразо́вывать постоя́нный ток в переме́нный — invert direct to alternating current
    трансформи́ровать ток из перви́чной во втори́чную обмо́тку ( трансформатора) — induce secondary current
    2. (течение, поток) current, flow; stream
    3. ( площадка для молотьбы) с.-х. thrashing floor
    ток абсо́рбции ( диэлектрика) — absorption current
    акти́вный ток — active current
    ток ано́да — брит. anode current; амер. plate current
    безопа́сный ток ( для человека) — let-go current
    ток бе́лого по́ля ( в фототелеграфии) — white current
    блужда́ющий ток — stray [vagabond] current
    вихрево́й ток — eddy current
    ток во вне́шней цепи́ — external current
    ток во втори́чной обмо́тке — secondary current
    ток возбужде́ния — ( в электромашинах) exciting [excitation, field] current; ( радиосхемы) drive current
    ток вольтме́тра, нача́льный — residual [standing] (meter) current
    компенси́ровать нача́льный ток вольтме́тра — balance out [back off, buck] the residual [standing] current
    ток в перви́чной обмо́тке — primary current
    встре́чный ток — back [reverse] current
    входно́й ток — input current
    ток вы́борки ( матричной памяти) вчт. — drive [selection] current
    вызывно́й ток тлф.ringing current
    вы́прямленный ток — rectified current
    ток высо́кой частоты́ — r.f. current
    выходно́й ток — output current
    де́йствующий ток — root-mean-square [rms] current
    ток дре́йфа — drift current
    ды́рочный ток — hole current
    ё́мкостный ток — capacitive current
    ток замыка́ния на зе́млю — fault-to-earth current
    ток за́писи вчт.write current
    ток запре́та вчт.inhibit current
    заря́дный ток — charging current; ( режим заряда батареи) charge rate
    затуха́ющий ток — decaying current
    земно́й ток — telluric [earth, terrestrial] current
    инжекцио́нный ток — injection current
    ионизацио́нный ток — ionization current
    ио́нный ток — ion current
    испыта́тельный ток — test current
    като́дный ток — cathode current
    колеба́тельный ток — oscillating current
    конвекцио́нный ток — convection current
    ко́нтурный ток — loop [mesh] current
    ток коро́ткого замыка́ния — short-circuit current
    коррозио́нный ток — corrosion current
    крити́ческий ток — critical current
    лави́нный ток — avalanche current
    лине́йный ток — ( с линейной зависимостью) linear current; ( в многофазных цепях) line current
    максима́льный ток — peak current
    мгнове́нный ток — instantaneous current
    многофа́зный ток — polyphase current
    ток нагру́зки — load current
    ток нака́ла — filament [heater] current
    намагни́чивающий ток — magnetizing current
    ток насыще́ния — saturation current
    несинусоида́льный ток — non-sinusoidal current
    несу́щий ток — carrier current
    ток неустанови́вшегося режи́ма — transient current
    номина́льный ток — rated [nominal] current
    номина́льный ток автомати́ческого выключа́теля — current rating
    обме́нный ток — exchange current
    ток обра́тной свя́зи — feedback current
    обра́тный ток — back [reverse] current
    о́бщий ток ( в анализе цепей) — line current
    объё́мный ток — steady volume current
    ток, ограни́ченный простра́нственным заря́дом — space-charge-limited [SCL] current
    однофа́зный ток — single-phase current
    операти́вный ток ( используемый в цепях управления) — control current
    оста́точный ток — residual current
    ток отключе́ния автомати́ческого выключа́теля — interrupting (current) rating
    ток отпуска́ния — ( реле) drop-out [release] current; ( электронных схем или устройств) turn-off current
    парази́тный ток — spurious [parasitic, stray, sneak] current
    паралле́льный ток — parallel flow
    ток перегру́зки — overload current
    переме́нный ток — alternating current, a.c.
    перехо́дный ток — transient current
    периоди́ческий ток — periodic current
    пилообра́зный ток — saw-tooth current
    пироэлектри́ческий ток — pyroelectric current
    ток пита́ния — feed [supply] current
    пла́вящий ток — fusing current
    ток пла́змы — plasma current
    пове́рхностный ток — surface current
    ток поврежде́ния ( в электроустановках) — fault current
    размыка́ть ток поврежде́ния — interrupt [switch] the fault current
    ток подмагни́чивания — bias current
    ток поко́я — ( в радиолампах) quiescent current; ( в телеграфии) spacing current
    ток по́лной вы́борки вчт.full-select current
    по́лный ток — total current
    положи́тельный ток — positive current
    ток полувы́борки вчт.half-select current
    ток поляриза́ции — polarization current
    постоя́нный ток — ( по величине) constant current; ( по знаку) direct current, d.c.
    ток поте́рь — loss current
    потребля́емый ток — consumption current
    предпробо́йный ток — prebreak-down current
    предразря́дный ток ( газоразрядной лампы) — preconduction current
    ток предыониза́ции — preionization current
    преры́вистый ток — intermittent current
    принуждё́нный ток — forced [steady-state] current
    ток проводи́мости — conduction current
    ток простра́нственного заря́да — space-charge current
    прямо́й ток — forward current
    пульси́рующий ток — pulsating current
    пусково́й ток — starting current
    ток пучка́ — beam current
    рабо́чий ток
    1. телегр. mark(ing) current
    2. эл. ( не путать с то́ком сраба́тывания) operating current (not to be confused with operate current)
    устана́вливать рабо́чий ток компенса́тора изм.standardize the potentiometer
    ток развё́ртки — sweep current
    разгово́рный ток тлф.speaking current
    разря́дный ток
    1. discharge current
    2. вчт. digit current
    реакти́вный ток — reactive current
    ток рекомбина́ции — recombination current
    ток самоинду́кции — self-inductance current
    сва́рочный ток — welding current
    свобо́дный ток — free current
    се́точный ток — grid current
    си́льный ток — strong [heavy] current
    синусоида́льный ток — sinusoidal [harmonic] current
    синфа́зный ток — in-phase current
    синхронизи́рующий ток — synchronizing current
    сквозно́й ток ( диэлектрика) — steady leakage current
    сла́бый ток — weak current
    ток смеще́ния
    1. (физическая величина, характеризующая магнитное действие переменного электрического поля) displacement current
    ток сраба́тывания — operate current
    ста́ртовый ток — starting current
    сторо́нний ток — extraneous current
    ток счи́тывания вчт.read current
    теллури́ческий ток — telluric [earth, terrestrial] current
    темново́й ток — dark current
    ток теплово́го возбужде́ния — thermal agitation current
    термоэлектри́ческий ток — thermocurrent
    термоэлектро́нный ток — thermionic current
    трёхфа́зный ток — three-phase current
    тунне́льный ток — tunnel current
    ток управле́ния, неотпира́ющий ( симистора) — gate non-trigger current
    ток управле́ния, отпира́ющий ( симистора) — gate trigger current
    уравни́тельный ток — circulating current
    усло́вный ток (условное направление тока; в анализе цепей) — conventional current, conventional flow
    ток установи́вшегося режи́ма — steady-state current; ( в анализе цепей) steady-state [forced] current
    ток уте́чки — leakage current
    фа́зовый ток — phase current
    флуктуацио́нный ток — random current
    ток фотокато́да — photocathode current
    фотоэлектри́ческий ток — photo (electric) current
    то́ки Фуко́ — Foucault [eddy] currents
    ток холосто́го хо́да — ( без нагрузки) no-load current; ( в анализе цепей) open-circuit current
    ток части́чной вы́борки вчт.partial-select current
    ток чё́рного по́ля ( в фототелеграфии) — black current
    числово́й ток вчт.word current
    шумово́й ток ( полевого транзистора) — noise current
    электри́ческий ток — electric current
    подводи́ть электри́ческий ток к сва́риваемым дета́лям — convey (welding) current to the workpieces
    электро́нный ток — electron(ic) current
    ток эми́ссии — emission current
    ток я́коря — armature current

    Русско-английский политехнический словарь > ток

  • 12 запас

    запас сущ
    1. stock
    2. store аэронавигационный запас топлива
    en-route fuel reserve
    безопасный запас
    safe margin
    допустимый запас высоты от колес до порога ВПП
    threshold wheel clearance
    достаточный запас
    adequate margin
    запас высоты
    1. vertical clearance
    2. altitude margin 3. clearance margin запас высоты законцовки крыла
    wing tip clearance
    запас дистанции разбега
    distance margin
    запас масла для флюгирования
    feathering oil reserve
    запас мощности
    power margin
    запас плавучести
    reserve buoyancy
    запас подъемной силы
    margin of lift
    запас по оборотам несущего винта
    rotor speed margin
    запас по помпажу
    surging margin
    запас по сваливанию
    stall margin
    запас по ускорению
    acceleration margin
    запас продольной статической устойчивости
    longitudinal static margin
    запас продольной устойчивости
    manoeuvre margin
    запас прочности
    1. margin
    2. proof strength 3. safe load factor 4. strength margin запас прочности воздушного судна
    aircraft reserve factor
    запас скорости
    speed margin
    запас статической устойчивости
    static margin
    запас топлива
    1. fuel load
    2. fuel capacity 3. fuel availability 4. fuel range 5. availability запас топлива воздушного судна
    aircraft fuel quantity
    запас топлива на борту
    on-board fuel
    запас топлива на рейс
    block fuel
    запас тяги
    thrust reserve
    запас управляемости воздушного судна
    aircraft control margin
    запас устойчивости
    margin of stability
    запас устойчивости с застопоренным управлением
    margin with stick fixed
    запас центровки
    center-of-gravity margin
    коэффициент запаса длины
    length factor
    критический запас топлива
    critical fuel reserve
    невырабатываемый запас топлива
    unusable reserve
    неправильно оценивать запас высоты
    misjudge clearance
    несливаемый запас топлива
    undrainable fuel reserve
    обеспечивать запас высоты
    ensure clearance
    основной запас топлива
    main fuel
    ошибочно выбранный запас высоты
    misjudged clearance
    продолжать полет на аэронавигационном запасе топлива
    continue operating on the fuel reserve
    продолжительность по запасу топлива
    fuel endurance
    расчет запаса топлива
    fuel range estimating
    сохранять запас высоты
    preserve the clearance
    топливомер суммарного запаса топлива
    fuel totalizer
    указатель суммарного запаса топлива
    total fuel indicator
    часовой запас топлива
    one-hour fuel reserve

    Русско-английский авиационный словарь > запас

  • 13 топливо

    топливо сущ
    1. fuel
    2. propellant аварийно сливать топливо
    jettison fuel
    аварийный слив топлива
    fuel dumping
    авиационное топливо
    aviation fuel
    авиационное топливо для турбореактивных двигателей
    aviation turbine fuel
    автомат подачи пускового топлива
    starting fuel control unit
    агрегат дозировки топлива
    fuel metering unit
    аэродромный штуцер заправки топливом
    airfield fuel valve
    аэродром, обеспечивающий заправку топливом
    refuelling aerodrome
    аэронавигационный запас топлива
    en-route fuel reserve
    бак второй очереди расхода топлива
    second fuel consumed tank
    бак первой очереди расхода топлива
    first fuel consumed tank
    балансировка выработкой топлива
    fuel trimming
    без дозаправки топливом
    nonrefuelling
    включать подачу топлива из бака с помощью электрического крана
    switch to the proper tank
    включать подачу топлива из бока с помощью механического крана
    turn the proper tank on
    время заправки топливом
    fueling time
    высококалорийное топливо
    high-energy fuel
    высококачественное топливо
    high-grade fuel
    высокооктановое топливо
    high-octane fuel
    высота оптимального расхода топлива
    fuel efficient altitude
    давление в системе подачи топлива
    fuel supply pressure
    давление откачки топлива
    defueling suction pressure
    дальность полета до полного израсходования топлива
    flight range with no reserves
    датчик расхода топлива
    fuel flow transmitter
    двигательный насос подкачки топлива
    engine-driven fuel boost pump
    двухконтурный турбореактивный двигатель с дожиганием топлива во втором контуре
    duct burning bypass engine
    детонация топлива
    1. fuel knock
    2. fuel detonation доводить расход топлива до минимума
    minimize fuel consumption
    дожигать топливо, форсировать двигатель
    reheat
    дозаправка топливом
    refuelling
    дозаправка топливом в полете
    air refuelling
    дозаправлять топливом в полете
    refuel in flight
    дозаправлять топливом на промежуточной посадке по маршруту
    refuel en-route
    зажигать топливо
    ignite fuel
    запас топлива
    1. fuel range
    2. fuel availability 3. fuel load 4. availability 5. fuel capacity запас топлива воздушного судна
    aircraft fuel quantity
    запас топлива на борту
    on-board fuel
    запас топлива на рейс
    block fuel
    заправка топливом
    1. fueling
    2. fuel filling заправка топливом под давлением
    pressure fueling
    заправка топливом сверху крыла
    overwing fueling
    заправлять бак топливом
    fuel the tank
    заправлять топливом
    1. fuel up
    2. refuel клапан пускового топлива
    started fuel valve
    количество заправляемого топлива
    fuel uplift
    количество топлива, требуемое для взлета
    takeoff fuel
    коллектор системы заправки топливом под давлением
    pressure fueling manifold
    командное топливо
    controlling fuel
    комплект оборудования для заправки и слива топлива
    refuelling unit
    кран аварийного слива топлива
    jettison valve
    кран заправки топливом
    fueling valve
    критический запас топлива
    critical fuel reserve
    линия перепуска топлива
    bypass fuel line
    манометр давления топлива
    fuel pressure gage
    масса без топлива
    1. zero fuel weight
    2. zero fuel mass межбаковая трубка перекачки балансировочного топлива
    intertank balance pipe
    насос перекачки топлива
    fuel transfer pump
    насос подкачки топлива
    fuel booster pump
    невырабатываемый запас топлива
    unusable reserve
    невырабатываемый остаток топлива
    unusable fuel
    некондиционное топливо
    improper fuel
    неравномерная выработка топлива
    uneven use of fuel
    несливаемый запас топлива
    undrainable fuel reserve
    несливаемый остаток топлива
    trapped fuel
    нехватка топлива
    fuel starvation
    органическое топливо
    fossil fuel
    основной запас топлива
    main fuel
    ответственный за заправку топливом
    fueling superintendent
    (в аэропорту) откачка топлива
    defueling
    очередность выработки топлива
    sequence of fuel usage
    (по группам баков) патрубок забора топлива
    fuel outlet pipe
    перекачивать топливо
    transfer fuel
    перекрывать подачу топлива
    shut off fuel
    переходник для заправки топливом
    1. fueling adapter
    2. jacking adapter пистолет заправки топливом
    fueling nose unit
    подавать топливо
    introduce fuel
    подача топлива в систему воздушного судна
    aircraft fuel supply
    подводить топливо
    feed fuel
    подкачивать топливо
    boost fuel
    подогреватель топлива
    fuel heater
    полет с дозаправкой топлива в воздухе
    refuelling flight
    полная выработка топлива
    1. fuel depletion
    2. fuel runout полностью вырабатывать топливо
    run out fuel
    поплавковый клапан заправки топливом
    float-type fueling valve
    порядок выработки топлива
    fuel management schedule
    преднамеренно слитое топливо
    intentionally damped fuel
    при расчете количества топлива
    in computing the fuel
    продолжать полет на аэронавигационном запасе топлива
    continue operating on the fuel reserve
    продолжительность по запасу топлива
    fuel endurance
    продолжительность полета без дозаправки топливом
    nonrefuelling duration
    промежуточный расходный бак перекачки топлива
    alternate fuel tank
    противопожарный отсечный клапан топлива
    fuel fire shutoff valve
    пусковое топливо
    starting fuel
    работать на топливе
    operate on fuel
    равномерная выработка топлива
    even use of fuel
    распределение топлива
    fuel distribution
    распределитель топлива
    fuel distributor
    распыливание топлива
    fuel atomization
    распыливать топливо
    atomize fuel
    расходовать топливо
    use fuel
    расход топлива
    fuel flow
    расход топлива воздушным судном
    aircraft fuel consumption
    расходуемое топливо
    usable fuel
    расчет запаса топлива
    fuel range estimating
    реактивное воздушное судно с низким расходом топлива
    economical-to-operate jetliner
    регулирование непосредственного впрыска топлива
    fuel injection control
    регулирование подачи топлива
    fuel metering
    регулирование расхода топлива
    fuel flow
    регулятор расхода топлива
    fuel governor
    рычаг стоп-крана подачи топлива
    fuel shutoff valve lever
    сбор за заправку топливом
    fuel throughput charge
    сбрасывать топливо на вход
    bypass fuel back
    сброс топлива
    fuel bypass back
    сигнализатор остатка топлива
    fuel low level switch
    (в баке) сигнальная лампочка давления топлива
    fuel pressure warning light
    система аварийного слива топлива
    1. fuel jettisoning system, fuel jettisonning system
    2. fuel dump system система впрыска топлива
    fuel injection system
    система выработки топлива
    fuel usage system
    (из баков) система заправки топливом под давлением
    pressure fueling system
    система измерения расхода топлива
    fuel flowmeter system
    система контроля количества и расхода топлива
    fuel indicating system
    система подачи топлива
    1. fuel supply system
    2. fuel feed system система подачи топлива под давлением
    pressure fuel system
    система подачи топлива самотеком
    fuel gravity system
    система подогрева топлива
    fuel preheat system
    (на входе в двигатель) система слива топлива
    defueling system
    система снижения подачи топлива
    fuel dip system
    система управления подачей топлива
    fuel management system
    скорость аварийного слива топлива
    fuel dumping rate
    скорость слива топлива
    fuel off-load rate
    сливаемое топливо
    drainable fuel
    сливать топливо
    dump fuel
    слив топлива
    1. fuel discharge
    2. fuel draining слив топлива отсосом
    suction defueling
    сорт топлива
    fuel grade
    схема полета с минимальным расходом топлива
    fuel savings procedure
    схема с минимальным расходом топлива
    economic pattern
    счетчик остатка топлива
    fuel remaining counter
    счетчик расхода топлива
    fuel consumed counter
    твердое топливо
    solid propellant
    топливо без воздушных пузырьков
    bubble-free fuel
    топливо для реактивных двигателей
    jet fuel
    топливомер суммарного запаса топлива
    fuel totalizer
    топливо на опробование
    run-up fuel
    топливо расходуемое на выбор высоты
    climb fuel
    топливо, расходуемое при рулении
    taxi fuel
    топливо широкой фракции
    wide-cut fuel
    труба перелива топлива
    fuel gravity transfer tube
    трубка отсечного топлива
    fuel bypass pipe
    угол распыла топлива
    fuel spray pattern
    удельный расход топлива
    specific fuel consumption
    удельный расход топлива на кг тяги в час
    thrust specific fuel consumption
    указатель давления топлива
    fuel pressure indicator
    указатель количества топлива
    fuel quantity indicator
    указатель мгновенного расхода топлива
    fuel flow indicator
    указатель остатка топлива
    fuel remaining indicator
    указатель положения рычага топлива
    throttle position indicator
    указатель расходомера топлива
    flowmeter indicator
    указатель суммарного запаса топлива
    total fuel indicator
    управление перепуском топлива
    bypass control
    уровень расхода топлива
    fuel consumption rate
    утечка топлива
    fuel spill
    форсунка первого контура подачи топлива
    primary fuel nozzle
    форсунка пускового топлива
    starting fuel nozzle
    характеристика топлива
    fuel property
    централизованная дозаправка топливом
    single-point refuelling
    централизованная заправка топливом
    single-point fueling
    часовой запас топлива
    one-hour fuel reserve
    часть бака, не заполненная топливом
    ullage space
    шланг для слива топлива
    defueling hose
    шланг отвода топлива
    fuel outlet hose
    штуцер дозаправки топливом под давлением
    pressure refuel coupling
    штуцер заправки топливом под давлением
    pressure fueling coupling
    экономить топливо
    conserve fuel
    эмульсированное топливо
    emulsified fuel

    Русско-английский авиационный словарь > топливо

  • 14 давление

    ( воздуха в камере шины) inflation, intake pressure авто, pressure, push, tension
    * * *
    давле́ние с.
    pressure
    воспринима́ть давле́ние — ( о конструкции) take up pressure; ( о датчике) sense the pressure
    выде́рживать давле́ние — withstand pressure
    давле́ние до (напр. вентиля, клапана) — the pressure upstream
    давле́ние за (напр. вентилем, клапаном) — the pressure downstream
    давле́ние па́дает — the pressure falls [drops, decreases]
    повыша́ть [поднима́ть] давле́ние — build up [raise] pressure
    повыше́ние давле́ния ( в воздухозаборнике воздушно-реактивного двигателя) [m2]за счёт скоростно́го напо́ра — ramming
    под давле́нием — under pressure; ( с указанием величины давления) under a pressure of (e. g., 100 atmospheres)
    подава́ть давле́ние — apply pressure
    давле́ние поднима́ется — the pressure rises
    приводи́ть давле́ние к этало́нному у́ровню — correct air-pressure readings to a common datum
    развива́ть давле́ние — build up [apply, generate] a pressure of …
    давле́ние растё́т — the pressure rises
    создава́ть давле́ние — pressurize
    спуска́ть [стра́вливать] давле́ние — release [exhaust] pressure
    уде́рживать давле́ние — hold pressure
    абсолю́тное давле́ние — absolute pressure
    аксиа́льное давле́ние
    1. маш. (end) thrust
    2. (напр. нагрузка вала на подпятник) axial [end] thrust
    атмосфе́рное давле́ние — atmospheric [barometric] pressure
    ба́ксовое давле́ние ( при спуске судна на воду) — end poppet [pivoting] pressure
    барометри́ческое давле́ние — atmospheric [barometric] pressure
    боково́е давле́ние — lateral [side] thrust, lateral [side] pressure
    вакуумметри́ческое давле́ние — vacuum-gauge pressure
    давле́ние вентиля́тора, динами́ческое — velocity pressure
    давле́ние вентиля́тора, по́лное — total pressure rise
    весово́е давле́ние — equilibrium pressure
    давле́ние ве́тра — wind pressure
    давле́ние в крити́ческой то́чке ( в потоке газа или жидкости) — stagnation pressure
    вне́шнее давле́ние — ambient [external] pressure
    вну́треннее давле́ние — intrinsic [internal] pressure
    давле́ние возникнове́ния кавита́ции — cavitation pressure
    давле́ние в перехо́дном режи́ме — transient pressure
    давле́ние впры́ска то́плива — injection pressure
    давле́ние впу́ска то́плива — intake [admission] pressure
    давле́ние в равнове́сной систе́ме — equilibrium pressure
    давле́ние вса́сывания то́плива — intake [admission] pressure
    давле́ние вспы́шки двс.explosion pressure
    втори́чное давле́ние горн.secondary pressure
    давле́ние в усло́виях есте́ственной тя́ги — natural draught pressure
    давле́ние в ши́не — inflation [tyre] pressure
    давле́ние в ши́не недоста́точное — the tyre is underinflated
    давле́ние в ши́не чрезме́рное — the tyre is overinflated
    давле́ние вы́садки метал.-об.upsetting pressure
    высо́кое давле́ние — heavy [high] pressure
    давле́ние выта́лкивания метал.repressing pressure
    давле́ние вытесне́ния ( топлива в ЖРД) — pressurization pressure
    давле́ние га́зов на колошнике́ метал.top gas pressure
    гидростати́ческое давле́ние — hydrostatic pressure
    го́рное давле́ние — rock pressure
    давле́ние гру́нта — soil pressure
    действи́тельное давле́ние — effective pressure
    динами́ческое давле́ние — dynamic pressure
    давле́ние диссоциа́ции — dissociation pressure
    до́нное давле́ние ракет.base pressure
    допусти́мое выпускно́е давле́ние ( вакуум-насоса) — blank-off pressure
    давле́ние дутья́ — blast pressure
    забо́йное давле́ние горн.seam pressure
    закрити́ческое давле́ние — supercritical pressure
    давле́ние звуково́го излуче́ния — sound pressure
    звуково́е давле́ние — sound pressure
    избы́точное давле́ние
    2. (внутри замкнутого объёма здания и т. п. по отношению к окружающей среде) positive pressure
    3. ( наддува гермокабины) differential pressure, pressure differential
    4. метал. surplus [excessive] pressure
    давле́ние излуче́ния — radiation pressure
    индика́торное давле́ние — indicated pressure
    инерцио́нное давле́ние — inertia [mass] pressure
    ионизацио́нное давле́ние ( газа) — ionization pressure
    испыта́тельное давле́ние — test pressure
    давле́ние истече́ния — flow pressure
    капилля́рное давле́ние — capillary pressure
    каса́тельное давле́ние авто — circumferential [peripheral] pressure
    квазигидростати́ческое давле́ние — quasihydrostatic pressure
    кинети́ческое давле́ние — kinetic pressure
    когезио́нное давле́ние — cohesive [cohesion] pressure
    колло́идно-осмоти́ческое давле́ние — colloid-osmotic pressure
    коне́чное давле́ние — terminal pressure
    конта́ктное давле́ние — contact pressure
    давле́ние конта́ктной пове́рхности электро́да свар.point pressure
    крити́ческое давле́ние — critical pressure
    давле́ние кро́вли горн. — roof [top] pressure
    лобово́е давле́ние ав.ram
    манометри́ческое давле́ние — gauge pressure
    мгнове́нное давле́ние — dynamic pressure
    ме́стное давле́ние — localized pressure
    давле́ние мета́лла на валки́ прок. — roll force, rolling pressure
    давле́ние мета́лла на валки́, уде́льное прок.roll-separating force
    давле́ние набега́ния ( одной детали на другую) — climbing [running-on] pressure
    давле́ние набега́ющего пото́ка — wind-blast pressure
    давле́ние на вхо́де — inlet pressure
    давле́ние на вы́ходе — outlet pressure
    давле́ние нагнета́ния — discharge pressure
    давле́ние нагру́зки — load pressure
    давле́ние на грунт — soil pressure
    давле́ние надду́ва — ( в системах подачи топлива в ЖРД) pressurization pressure; ( в поршневых двигателях) boost [supercharge] pressure
    давле́ние, напра́вленное внутрь — inward pressure
    давле́ние, напра́вленное вовне́ — outward pressure
    давле́ние насыще́ния — saturation pressure
    давле́ние на у́ровне мо́ря — sea level pressure
    нача́льное давле́ние — initial pressure
    давле́ние на щё́тку эл.brush pressure
    ни́зкое давле́ние ( по сравнению с требуемым) — underpressure
    номина́льное давле́ние — nominal pressure
    норма́льное давле́ние
    давле́ние обжа́тия прок.draught pressure
    односторо́ннее давле́ние — one-sided pressure
    опо́рное давле́ние — bearing [support] pressure
    осево́е давле́ние
    1. маш. (end) thrust
    2. (напр. нагрузка вала на подпятник) axial [end] thrust
    осмоти́ческое давле́ние — osmotic pressure
    оста́точное давле́ние — residual pressure
    давле́ние отбо́ра тепл.extraction pressure
    давле́ние па́ра (напр. в котле, турбине) — steam pressure
    парциа́льное давле́ние — partial pressure
    давле́ние пера́ на бума́гу ( в самописцах) — pen-to-paper pressure
    переме́нное давле́ние — alternating pressure
    давле́ние печа́ти — printing pressure
    пи́ковое давле́ние — peak pressure
    пластово́е давле́ние горн.seam pressure
    пове́рхностное давле́ние — surface pressure
    давле́ние пода́чи (напр. топлива, масла, кислорода и т. п.) — delivery pressure
    давле́ние под колошнико́м ( доменной печи) — top pressure
    давле́ние под сво́дом ( мартеновской печи) — roof pressure
    по́лное давле́ние ( потока) — impact [Pitot] pressure
    давле́ние порообразова́ния рез.blowing pressure
    постоя́нное давле́ние — constant pressure
    поясно́е давле́ние стр.circumferential pressure
    преде́льное давле́ние — limiting pressure
    преде́льное, допусти́мое давле́ние — maximum safe pressure
    давле́ние прессова́ния метал.compacting pressure
    приведё́нное давле́ние — reduced pressure
    давле́ние проду́вки — scavenging pressure
    давле́ние прока́тки — rolling pressure
    промежу́точное давле́ние — intermediate pressure
    равнове́сное давле́ние — equilibrium pressure
    радиа́льное давле́ние ( нагрузка) — radial thrust
    давле́ние разреже́ния — expansion pressure
    разруша́ющее давле́ние — collapsing pressure
    разрывно́е давле́ние — bursting pressure
    раскли́нивающее давле́ние — disjoining [wedging] pressure
    расчё́тное давле́ние — design pressure
    реакти́вное давле́ние — reaction pressure
    сверхвысо́кое давле́ние — ultrahigh pressure
    сверхкрити́ческое давле́ние — supercritical pressure
    давле́ние све́та — light pressure
    давле́ние сгора́ния — combustion pressure
    давле́ние сду́ва аргд.blowing-off pressure
    давле́ние сжа́тия — compression pressure
    сплю́щивающее давле́ние ( в производстве труб) — collapsing pressure
    стати́ческое давле́ние — static pressure
    давле́ние сцепле́ния
    1. авто clutch pressure
    2. ( молекулярное) cohesive pressure
    тангенциа́льное давле́ние — circumferential [peripheral] pressure
    давле́ние торможе́ния
    1. авто brake pressure
    2. аргд. stagnation pressure
    уде́льное давле́ние — unit (area) pressure
    давле́ние у земли́ — ground-level pressure
    управля́ющее давле́ние — control pressure
    уравнове́шивающее давле́ние — balancing pressure
    установи́вшееся давле́ние — steady-state pressure
    давле́ние фильтра́ции — percolation pressure
    давле́ние формова́ния пласт. — moulding [shaping] pressure
    электростати́ческое давле́ние — electrostatic pressure
    этало́нное давле́ние — reference pressure
    эффекти́вное давле́ние — effective pressure
    * * *

    Русско-английский политехнический словарь > давление

  • 15 до

    The lake is up to 600 m deep.

    As many as 50 individual reaction steps might be necessary for complete synthesis.

    These losses may be as much as 1.5% of the silver present.

    We have made wire in sizes down to 0.005 in diameter.

    The heater will heat the gas to the desired temperature.

    Pieces weighing up to (or not over) three kilograms may be used for the test.

    II

    The group I tRNAs arose prior to the others (биол.).

    Prior to the seventeenth century...

    Until the Three Mile Island accident the most widely discussed type of reactor malfunction was...

    Prior to testing, all specimens were dried.

    This decreases time to rupture.

    Paste adhesives are knife-coated to uniform thickness.

    IV

    A globe valve is installed in the supply air line, upstream from (or of) the reducer, so that the air may be shut off by hand.

    * * *
    До(критический)-- In this and the sections that follow, reference is made to the subcritical, critical and supercritical ranges of Reynolds number. До -- prior to, previous to, in advance of, before, until, pending (прежде чем); to, until, as high as, up to, down to (вплоть до)
     Any changes proposed subsequent to Purchase Order placement shall not be made prior to agreement with the company.
     They should check the suitability of the load for treatment in advance of shipment.
     The test unit will be subjected to a limited post-test inspection program pending its removal from the test rig.
     Mach numbers as high as 0.7 were considered in the present study.
     Errors in concentricity can be assessed and recorded on polar graphs at magnifications of up to 10,000.

    Русско-английский научно-технический словарь переводчика > до

  • 16 конечная величина

    1. finite quantity; final quantity
    2. finite value

    значение функции полезности; величина выигрышаmerit value

    абсолютная величина, абсолютное значениеabsolute value

    стандартное значение; стандартная величинаstandard value

    коэффициент излучения; величина излученияemittance value

    величина излучения; коэффициент излученияradiation value

    Русско-английский большой базовый словарь > конечная величина

  • 17 момент

    1. м. физ. мех., moment

    затягивать с моментом … кг м — torque to … kg m

    2. м. moment, instant, time
    Синонимический ряд:
    1. мгновение (сущ.) время; мгновение; миг; минута; минутка; минутку; минуту; пора; пору; секунда; секунду; час
    2. мгновенно (сущ.) в два счета; в мгновение; в мгновение ока; в минуту; в момент; в один миг; в один момент; в одну минуту; вмиг; мгновенно; мигом; молниеносно; моментально; с быстротой молнии

    Русско-английский большой базовый словарь > момент

  • 18 ток

    1. м. current, flow; stream
    2. м. с. -х. thrashing floor

    ток анода — anode current; plate current

    ток возбуждения — exciting current; drive current

    зарядный ток — charging current; charge rate

    линейный ток — linear current; line current

    ток отпускания — drop-out current; turn-off current

    ток покоя — quiescent current; spacing current

    постоянный ток — constant current; direct current

    Русско-английский большой базовый словарь > ток

  • 19 нерациональный метод ограничения выбросов вредных веществ

    1. mass
    2. HTCART

    2.1.32 нерациональный метод ограничения выбросов вредных веществ: Любой метод или способ, который при эксплуатации ТС в нормальных условиях уменьшает эффективность системы ограничения выбросов вредных веществ до уровня ниже предполагаемого при использовании предписанных методов определения концентрации выбросов вредных веществ.

    2.2 В настоящем стандарте применены следующие обозначения и сокращения:

    2.2.1 Обозначения и единицы измерения показателей, определяемых в испытаниях

    Обозначение

    Наименование показателя

    показателя

    единицы измерения показателя

    АР

    м2

    Площадь поперечного сечения изокинетического пробоотборника

    АТ

    м2

    Площадь поперечного сечения выпускной трубы

    СЕЕ

    -

    Эффективность по этану

    СЕМ

    -

    Эффективность по метану

    С1

    -

    Углеводороды, эквивалентные углероду С1

    сопс

    млн-1 или объемная доля, %

    Концентрация. Указанное обозначение используется в качестве нижнего индекса

    D0

    м3

    Отрезок, отсекаемый на координатной оси калибровочной функции PDP

    DF

    -

    Коэффициент разбавления

    D

    -

    Константа функции Бесселя

    Е

    -

    Константа функции Бесселя

    EZ

    г/(кВт×ч)

    Интерполированный выброс NOx в контрольной точке

    fa

    -

    Лабораторный атмосферный коэффициент

    fc

    с-1

    Частота, отсекаемая фильтром Бесселя

    FFH

    -

    Удельный коэффициент топлива для расчета влажного состояния по сухому состоянию

    Fs

    -

    Стехиометрический коэффициент

    GAIRV

    кг/ч

    Массовый расход воздуха на впуске во влажном состоянии

    GAIRD

    кг/ч

    Массовый расход воздуха на впуске в сухом состоянии

    GDILW

    кг/ч

    Массовый расход разбавленного воздуха во влажном состоянии

    GEDFW

    кг/ч

    Эквивалентный массовый расход разбавленных отработавших газов во влажном состоянии

    GEXHW

    кг/ч

    Массовый расход отработавших газов во влажном состоянии

    GFUEL

    кг/ч

    Массовый расход топлива

    GTOTW

    кг/ч

    Массовый расход разбавленных отработавших газов во влажном состоянии

    H

    мДж/м3

    Теплотворная способность

    HREF

    г/кг

    Исходная абсолютная влажность (10,71 г/кг)

    Ha

    г/кг

    Абсолютная влажность воздуха на впуске

    Hd

    г/кг

    Абсолютная влажность разбавляющего воздуха

    HTCART

    моль/моль

    Водородно-углеродное число

    i

    -

    Нижний индекс, обозначающий i-й режим

    К

    -

    Константа Бесселя

    k

    м-1

    Коэффициент светопоглощения

    KH, D

    -

    Поправочный коэффициент на влажность для NОx дизельного двигателя

    KH, G

    -

    Поправочный коэффициент на влажность для NOx газового двигателя

    Kv

    Калибровочная функция трубки Вентури CFV

    KW, a

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для воздуха на впуске

    KW, d

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавляющего воздуха

    KW, e

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавленных отработавших газов

    KW, r

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для неразбавленных отработавших газов

    L

    %

    Крутящий момент в процентах максимального крутящего момента испытуемого двигателя

    La

    м

    Эффективная база дымомера

    т

    Коэффициент наклона калибровочной функции насоса PDP

    mass

    г/ч или г

    Массовый расход (интенсивность потока). Указанное обозначение используется в качестве нижнего индекса

    MDIL

    кг

    Масса пробы разбавляющего воздуха, прошедшей через фильтры для отбора проб вредных частиц

    Md

    мг

    Уловленная масса проб вредных частиц в разбавляющем воздухе

    Мf

    мг

    Уловленная масса проб вредных частиц

    Мf, p

    мг

    Масса проб вредных частиц, уловленная на основном фильтре

    Мf, b

    мг

    Масса проб вредных частиц, уловленная на вспомогательном фильтре

    MSAM

    кг

    Масса пробы разбавленных отработавших газов, прошедших через фильтры для отбора вредных частиц

    MSEK

    кг

    Масса вторичного разбавляющего воздуха

    MTOTW

    кг

    Общая масса пробы CVS за цикл во влажном состоянии

    MTOTW, i

    кг

    Мгновенная масса пробы CVS во влажном состоянии

    N

    %

    Дымность

    NP

    -

    Общее число оборотов насоса PDP за цикл

    NP, i

    -

    Число оборотов насоса PDP в течение определенного промежутка времени

    n

    мин-1

    Частота вращения двигателя

    np

    с-1

    Частота вращения насоса PDP

    nhi

    мин-1

    Высокая частота вращения двигателя

    nlo

    мин-1

    Низкая частота вращения двигателя

    nref

    мин-1

    Исходная частота вращения двигателя для испытания ETC

    pa

    кПа

    Давление насыщения пара на впуске воздуха в двигатель

    pA

    кПа

    Абсолютное давление

    pB

    кПа

    Полное давление

    pd

    кПа

    Давление насыщения пара разбавляющего воздуха

    ps

    кПа

    Сухое атмосферное давление

    p1

    кПа

    Снижение давления на входе в насос

    P(a)

    кВт

    Мощность, поглощаемая вспомогательными устройствами, устанавливаемыми при проведении испытаний

    P(b)

    кВт

    Мощность, поглощаемая вспомогательными устройствами, демонтируемыми при проведении испытания

    P(n)

    кВт

    Некорректированная полезная мощность

    P(m)

    кВт

    Мощность, измеренная на испытательном стенде

    W

    -

    Константа Бесселя

    QS

    м3

    Объемный расход воздуха в трубке Вентури CFV

    q

    -

    Коэффициент разбавления

    r

    -

    Отношение площадей поперечного сечения изокинетического пробоотборника и выпускной трубы

    Ra

    %

    Относительная влажность воздуха на впуске

    Rd

    %

    Относительная влажность разбавляющего воздуха

    Si

    m-1

    Мгновенное значение дымности

    Sl

    -

    Коэффициент l-смещения

    T

    К

    Абсолютная температура

    Rf

    -

    Коэффициент чувствительности FID

    r

    кг/м3

    Плотность

    S

    кВт

    Мощность, на которую отрегулирован динамометр

    Та

    К

    Абсолютная температура воздуха на впуске

    t

    с

    Время измерения

    te

    с

    Время срабатывания электрического сигнала

    tf

    с

    Время реакции фильтра для функции Бесселя

    tp

    с

    Физическое время реакции

    Dt

    с

    Временной интервал между последовательными моментами считывания данных о дымности (= 1/частота отбора проб)

    Dt1

    с

    Временной интервал между значениями мгновенных расходов в трубке Вентури CFV

    t

    %

    Прозрачность дыма

    V0

    м3/об

    Калибровочная функция объемного расхода насоса PDP в эксплуатационных условиях (на 1 оборот вала насоса)

    W

    -

    Число Воббе

    Wact

    КВт×ч

    Фактическая работа за цикл испытания ETC

    Wref

    КВт×ч

    Исходная работа за цикл испытания ETC

    WF

    -

    Коэффициент весомости

    WFE

    -

    Эффективный коэффициент весомости

    X0

    м3/oб

    Калибровочная функция объемного расхода воздуха насоса PDP (на 1 оборот вала насоса)

    Yi

    м-1

    Среднее значение коэффициента светопоглощения за 1 с по Бесселю

    2.2.2 Обозначения химических компонентов

    СН4 - метан;

    С2Н6 - этан;

    С2Н5ОН - этанол;

    С3Н8 - пропан;

    СО - оксид углерода;

    DOP - диоктилфталат;

    СО2 - диоксид углерода;

    НС - углеводороды;

    NMHC - (non-methane hydrocarbons) углеводороды, не содержащие метан;

    x - оксиды азота;

    NO - оксид азота;

    2 - диоксид азота;

    РТ - (particulates) вредные частицы.

    ТНС - (total hydrocarbons) общее количество углеводородов.

    2.2.3 Сокращения

    CFV - (critical flow venturi) трубка Вентури с критическим расходом;

    CLD - (chemiluminescent detector) хемилюминесцентный детектор;

    CVS - (constant volume sampling) отбор проб при постоянном объеме;

    ELR - (European load response test) европейский цикл испытаний реакции двигателя на изменение нагрузки;

    ESC - (European steady state cycle) европейский цикл испытаний в установившихся режимах;

    ETC - (European transient cycle) европейский цикл испытаний в переходных режимах;

    FID - (flame ionization detector) плазменно-ионизационный детектор;

    GC - (gas chromatograph) газовый хроматограф;

    HCLD - (heated chemiluminescent detector) нагреваемый хемилюминесцентный детектор;

    HFID - (heated flame ionization detector) нагреваемый плазменно-ионизационный детектор;

    LPG - (liquefied petroleum gas) сжиженный нефтяной газ;

    NDIR - (non-dispersive infrared) недисперсионный инфракрасный анализатор;

    NG - (natural gas) природный газ;

    NMC - (non-methane cutter) отделитель фракций, не содержащих метан;

    PDP - (positive displacement pomp) насос с объемным регулированием;

    PSS - (particulate sampling system) система отбора проб вредных частиц.

    Источник: ГОСТ Р 41.49-2003: Единообразные предписания, касающиеся сертификации двигателей с воспламенением от сжатия и двигателей, работающих на природном газе, а также двигателей с принудительным зажиганием, работающих на сжиженном нефтяном газе, и транспортных средств, оснащенных двигателями с воспламенением от сжатия, двигателями, работающими на природном газе, и двигателями с принудительным зажиганием, работающими на сжиженном нефтяном газе. В отношении выбросов вредных веществ оригинал документа

    Русско-английский словарь нормативно-технической терминологии > нерациональный метод ограничения выбросов вредных веществ

См. также в других словарях:

  • Critical taper — In mechanics and geodynamics, a critical taper is the equilibrium angle made by the far end of a wedge shaped agglomeration of material that is being pushed by the near end. The angle of the critical taper is a function of the material properties …   Wikipedia

  • Total Maximum Daily Load — A Total Maximum Daily Load (TMDL) is a regulatory term in the U.S. Clean Water Act (CWA), describing a value of the maximum amount of a pollutant that a body of water can receive while still meeting water quality standards. [CWA sec. 303(d),… …   Wikipedia

  • Load profile — In electrical engineering, a load profile is a graph of the variation in the electrical load versus time. A load profile will vary according to customer type (typical examples include residential, commercial and industrial), temperature and… …   Wikipedia

  • Network Load Balancing — (commonly referred to as dual WAN routing or multihoming) is the ability to balance traffic across two WAN links without using complex routing protocols like BGP. This capability balances network sessions like Web, email, etc. over multiple… …   Wikipedia

  • параллельная система ИБП — [Интент] Parallel Operation: The system shall have the option to install up to four (4) UPSs in parallel configuration for redundancy or capacity. 1. The parallel UPS system shall be of the same design, voltage, and frequency. UPS modules of… …   Справочник технического переводчика

  • предельная нагрузка (выше которой алмазы разрушаются) — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN total critical loadtotal critical pressure …   Справочник технического переводчика

  • environment — environmental, adj. environmentally, adv. /en vuy reuhn meuhnt, vuy euhrn /, n. 1. the aggregate of surrounding things, conditions, or influences; surroundings; milieu. 2. Ecol. the air, water, minerals, organisms, and all other external factors… …   Universalium

  • physical science, principles of — Introduction       the procedures and concepts employed by those who study the inorganic world.        physical science, like all the natural sciences, is concerned with describing and relating to one another those experiences of the surrounding… …   Universalium

  • river — river1 riverless, adj. riverlike, adj. /riv euhr/, n. 1. a natural stream of water of fairly large size flowing in a definite course or channel or series of diverging and converging channels. 2. a similar stream of something other than water: a… …   Universalium

  • solids, mechanics of — ▪ physics Introduction       science concerned with the stressing (stress), deformation (deformation and flow), and failure of solid materials and structures.       What, then, is a solid? Any material, fluid or solid, can support normal forces.… …   Universalium

  • Structural engineering — is a field of engineering dealing with the analysis and design of structures that support or resist loads. Structural engineering is usually considered a speciality within civil engineering, but it can also be studied in its own right. [cite… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»